(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(b(x)) → b(b(a(x)))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
a(b(x)) →+ b(b(a(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / b(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a(b(x)) → b(b(a(x)))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
a(b(x)) → b(b(a(x)))

Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a

(8) Obligation:

TRS:
Rules:
a(b(x)) → b(b(a(x)))

Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b

Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))

The following defined symbols remain to be analysed:
a

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol a.

(10) Obligation:

TRS:
Rules:
a(b(x)) → b(b(a(x)))

Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b

Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))

No more defined symbols left to analyse.